ism3d.arts.sparse.clouds_kin

ism3d.arts.sparse.clouds_kin(car, rcProf=None, vSigma=None, vRadial=None, nV=10, seed=3, return_cloudmeta=False)[source]

attached 3D velocity components to a cloudlet model

return cloudmeta data will slow thing down and use more memory

Rotation Curve, e.g.
rcProf=(‘table’,r_quantity,vrot_quantity)

r_quatity=np.minimum(sbRad/rmax,1.)*vmax vrot_quantity=np.minimum(sbRad/rmax,1.)*vmax

rcprof=(‘arctan’,v_ch,rad_ch) rcprof=(‘expon’,v_ch,rad_ch) rcprof=(‘tanh’,v_ch,rad_ch) rcProf=(‘rho : minimum(rho/p2,1.0)*p1’,200*u.km/u.s,5*u.kpc) # an inline function

#rmax=10*u.kpc #vmax=300*u.km/u.s #rcProf_r=np.arange(0.0,r_eff.value*10.0,r_eff.value/25.0)*r_eff.unit #rcProf_v=np.minimum(rcProf_r/rmax,1.)*vmax

seeds: the seed of random number generators for velocity components

subsize: equivlent to NV in galmod

this is to ensure velocity dispersion profile is properly simulated in the random process.

return:

cloudlet positions + velocity componnets in astropy.coordinates.representation.CartersianRepresentation coordinates are presented with the surface-brightness center as origin in the plane of the disc